ON f-CONNECTIONS OF POSITIVE DEFINITE MATRICES
نویسندگان
چکیده
In this paper, by using Mond-Pečarić method we provide some inequalities for connections of positive definite matrices. Next, we discuss specifications of the obtained results for some special cases. In doing so, we use α-arithmetic, α-geometric and α-harmonic operator means.
منابع مشابه
Gyrovector Spaces on the Open Convex Cone of Positive Definite Matrices
In this article we review an algebraic definition of the gyrogroup and a simplified version of the gyrovector space with two fundamental examples on the open ball of finite-dimensional Euclidean spaces, which are the Einstein and M"{o}bius gyrovector spaces. We introduce the structure of gyrovector space and the gyroline on the open convex cone of positive definite matrices and explore its...
متن کاملComputing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method
A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...
متن کاملSome numerical radius inequalities with positive definite functions
Using several examples of positive definite functions, some inequalities for the numerical radius of matrices are investigated. Also, some open problems are stated.
متن کاملPositivity and Conditional Positivity of Loewner Matrices
We give elementary proofs of the fact that the Loewner matrices [ f(pi)−f(pj) pi−pj ] corresponding to the function f(t) = t on (0,∞) are positive semidefinite, conditionally negative definite, and conditionally positive definite, for r in [0, 1], [1, 2], and [2, 3], respectively. We show that in contrast to the interval (0,∞) the Loewner matrices corresponding to an operator convex function on...
متن کاملFlat Connections and Wigner-yanase-dyson Metrics
On the manifold of positive definite matrices, we investigate the existence of pairs of flat affine connections, dual with respect to a given monotone metric. The connections are defined either using the α-embeddings and finding the duals with respect to the metric, or by means of contrast functionals. We show that in both cases, the existence of such a pair of connections is possible if and on...
متن کامل